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Abstract— This paper studies the problem of self-deployment
of heterogeneous mobile sensors using biologically-inspired prin-
ciples and methodologies. The initial sensor deployment is
assumed to be random, based on which two interrelated issues
are investigated: the design of an optimal placement pattern of
heterogeneous sensor platforms and the self configuration from
the initial random state to the optimal state through intelligent
sensor movement. We first develop an optimal placement al-
gorithm based on the mosaic technique inspired by the retina
mosaic pattern widely observed in both human and many animal
visual systems. Different types of mobile sensors are organized
into a mosaic pattern for both maximizing network coverage and
reducing network cost. Secondly, in order to converge to the opti-
mal state, we investigate the swarm intelligence (SI)-based sensor
movement strategy with the assistance of local communications,
through which the randomly deployed sensors can self-organize
themselves to reach the optimal placement state. The proposed
algorithm is compared with the random movement and the SI-
based method without direct communication using performance
metrics such as network coverage, redundancy, convergence
time, and energy consumption. Simulation results are presented
to demonstrate the effectiveness of the mosaic placement and
the SI-based movement with local communication.

Index Terms— Heterogenous sensor network, Coverage, Mo-
saick pattern, Swarm intelligence

I. I NTRODUCTION

In order to monitor activities within a region of interest
(ROI), a number of sensors with capabilities of sensing,
processing, communication and even mobilization can be
deployed to perform collaborative tasks. The problem of sen-
sor deployment then becomes an important and fundamental
issue in sensor networks as the location of individual sensor
node can largely affect the effectiveness of collaboration.
An optimal deployment algorithm is desired that aims at
minimizing energy consumption, reducing convergence time,
maximizing network coverage, while using as few sensors as
possible to minimize cost.

Sensor deployment algorithms vary with different applica-
tion scenarios. The simplest case is, when the environment
is sufficiently known and accessible. The sensor locations
can then be predetermined and the deployment is performed
manually so that the precise placement of sensors is possible.
To this end, many investigators have concentrated on the
design of spatial arrangement of sensor nodes to achieve

the desired detection performance [1], maximize the system
lifetime [2], and ensure connected coverage [3]. Uncertainty-
aware sensor deployment is discussed in [4], which takes
account of inherent uncertainties associated with the prede-
termined sensor locations.

When the environment is unknown or inaccessible, e.g.
some hazardous regions or adversarial environment, it is
not practical to manually deploy sensors, let alone sensor
networks of a large scale. Hence, in order to quickly form a
sensor network, the most efficient deployment method might
be airdrop. If we refer to the placement of sensor nodes
after airdrop as the “initial state” of the network, then this
initial state is almost certain not the “optimal state”. In
order to reach a reliable coverage provided at the optimal
state, we have to rely on mobile sensors to self-organize
themselves and eventually converge to the optimal placement.
This problem has been considered by a number of researchers,
and various techniques like the potential fields [5], [6], the
virtual force [7], and the Vorionoi-based [8] deployment
schemes have been thoroughly investigated. However, these
algorithms either are based on the centralized control [5],
[7], or require the sensors to stay within a certain distance
with one another so that they can use the neighboring node
information for further deployment of other sensors [5] or for
constructing the Vorionoi polygon [8]. The centralized control
is not energy-efficient due to full communication between
the sensor nodes and the cluster head or the base station.
The failure of the base station would lead to the failure of
the whole system. Furthermore, the centralized approach is
not feasible for large scale networks. On the other hand, the
dependence on the neighboring sensors, which is based on the
assumption that there is no “isolated” sensor after the initial
placement, is not realistic in real world applications.

In most existing deployment strategies, a common assump-
tion is that the sensor platform ishomogeneous, that is,
all the nodes in a sensor network are exactly the same. In
real-world applications, a sensor network usually consists
of a large number of sensor nodes with various sensing
and processing capabilities. In the context of a surveillance
network, we define aheterogeneous sensor networkas one
that consists of sensor nodes that carry different types of or
different combinations of sensing modalities. For example, a



sensor node may carry a microphone for acoustic sensing, a
geophone for seismic sensing, a magnetic sensor, a sonar, or
a combination of different modalities.

In this paper, aheterogeneoussensor network withself-
deployablecapability is investigated. We present a distributed
algorithm enabling mobile sensors to self-organize themselves
to achieve efficient coverage. The initial deployment is as-
sumed to be random which is the case in many practical
applications. The problem of optimal sensor deployment
has to consider two interrelated issues, the derivation of an
optimal state forsensor placement, and the convergence from
the “initial state” to the “optimal state” bysensor movement.

The optimal placement of heterogeneous sensor nodes in a
sensing field resembles the phenomena of different photore-
ceptors tiled on the retina of both human and many animal
visual systems. In the human visual system, three types of
cones with absorbance maxima in the long-, middle-, and
short-wavelength (L, M, and S cones) region, respectively, are
organized into mosaics on the retina [9], [10]. Only a single
type of photoreceptor samples the image at any given location,
while the reconstructed image presents full color information
at each pixel. Inspired by this biological phenomena, we
extend the mosaic technique for use in sensor placement, in
which different types of sensor nodes form a mosaic pattern
to provide reliable coverage with minimum cost. Following
how the insects self-organize themselves into a harmonious
society [11], [12], we present a swarm intelligence (SI)-based
movement algorithm. Each sensor can move freely within the
sensing field, guided by a simple rule carried by the sensor.
The individual behavior of different sensors leads the whole
sensor network to converge to the optimal state. To speed the
convergence, local communication is considered to conserve
sensor energy. Each sensor behaves independently according
to its own knowledge base. The effectiveness of the deploy-
ment algorithm is measured in terms of network coverage,
redundancy, convergence time, and energy consumption.

In the following, we first discuss the design of optimal
placement in Sec. II. We then present the SI-based movement
strategy in Sec. III. Sec. IV discusses the performance metrics
and Sec. V describes a series of experimental results. The
paper is concluded in Sec. VI.

II. OPTIMAL PLACEMENT OF HETEROGENEOUSSENSOR

PLATFORMS

In order to solve the problem of optimal placement of
heterogeneous sensors using the mosaicked technology, three
questions have to be answered, (1) what types of different
sensors should be deployed for a given task? (2) how many
sensors of each type should be deployed? and (3) how to
distribute each type of sensors spatially to achieve maximum
coverage using minimum number of sensor nodes?

The answer to the first question is mission-dependent. In a
sensor network, different types of sensors are specialized in
detecting different phenomena. Hence for a specific mission,
the configuration of sensor platforms should be different. For
example, if the mission is to detect civilian vehicles, then

the most useful sensing modalities might be microphone,
geophone and passive infrared (pir). In this paper, we assume
that the different types of sensor nodes have been specified
based on different applications.

The answer to the second question is referred to as the
problem of determining theprobability of appearance(POA),
which has a major role in generating an efficient placement
pattern. Take the same civilian target recognition application
as an example, among the three different sensing modalities,
microphones are more effective in detecting civilian vehicles
than geophones or pir sensors. Therefore, we might want to
deploy more nodes that carry microphones than nodes that
carry geophones or pir sensors. We user to represent the
ratio of the amount of different sensor nodes. For example,
r = 1/2 : 1/4 : 1/4 indicates that the number of microphones
is twice as many as the number of geophones and pir sensors.
In this paper, we use this ratio as an important factor to
determine the optimal pattern. However, we do not consider
how this ratio can be obtained as it is also highly mission-
oriented.

The answer to the third question concerns the spatial distri-
bution of the sensor nodes. In the animal society, the spatial
arrangement of cone mosaic has been examined in a variety of
species, and it has been found that the mosaic array of most
vertebrates is regular. Those animals who need high acuity
and rely heavily on vision possess a very regular mosaic array,
such as fish [13], [14] and mouse [15], [16]. Similarly, in
sensor networks, a promising and intuitive solution of sensor
deployment is to follow theuniform distribution. If a certain
type of sensor nodes distribute densely in some regions while
sparsely in others, the quality or coverage of the surveillance
will be affected, resulting in certain sparsely deployed regions
not being covered. On the other hand, the redundant data
reported from densely deployed regions would also increase
the network load. Therefore, the distribution of each type of
sensor nodes should be as uniform as possible.

Based on these design concerns, we de-

Fig. 1. A 3-
type network

velop a generic algorithm to generate optimal
mosaic placement given the different sensor
nodes and their corresponding POAs. We rep-
resent a large surveillance area covered by a
sensor network as a rectangular grid, and each
grid point can then be interpreted as a site
for the mobile sensors. The distance between two adjacent
grid points corresponds to the unit sampling distance of the
sensing field. A sensor placement example with three different
types of sensors (denoted by different colors) on an8×8 grid
is shown in the right figure.

We choose the checkerboard pattern as the starting point
because of its symmetry, uniform distribution, and the same
sampling frequency along the two orthogonal directions (i.e.
horizontal and vertical directions). Given the number of
different types of sensor nodes and the POA of each type,
the generic algorithm uses a combination of checkerboard
decomposition and subsampling to generate the optimal pat-
tern that satisfies the pre-defined POAs. This process can be



described using a binary tree, with the checkerboard pattern
as the root of the tree and the leaf nodes as the different
types of sensor nodes. The POA of each leaf node is given
by 1/2level, wherelevel refers to the level of the binary tree.
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Fig. 2. Illustration of the generation process of the optimal placement
pattern. (a) Generated binary tree. (b) Checkerboard separation. (c) A 5-type
optimal sensor placement pattern generated by combining all the leaf patterns
in (b).

Figure 2 illustrates the generation of a mosaic pattern
of five different types of sensor nodes using a binary tree
with five leaves (Figure 2(a)). Based on this binary tree,
we separate the checkerboard pattern as shown in Fig. 2(b).
The decomposition process is applied at the even levels
of the binary tree (including level zero, i.e. the root), and
the subsampling process the odd levels. The function of
decomposition is to divide the black and white blocks in the
original pattern into two sub-patterns such as the “label-1” and
“label-2” pattern illustrated in Fig. 2(b). The decomposition
of intermediate nodes needs some extra steps as exemplified
in Fig. 3, where node “3” at level two of the binary tree is
decomposed into node “7” and node “8”. The first step is to
extract all the labeled pixels to form a new smaller pattern
(S1), then a checkerboard based on the resulted smaller
pattern is constructed (S2), and finally the black and white
blocks are extracted separately and assigned to their original
locations to form new patterns as illustrated byS3 andS4 in
Fig. 3.
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Fig. 3. Illustration of decomposing an intermediate node.

The subsampling process is to sample the pattern by
2

level+1
2 along the horizontal and vertical directions. For

example, the label “3” and label “4” patterns are obtained by

subsampling pattern “1”, and label “5” and label “6” patterns
are the results of subsampling pattern “2” by 2.

Process the checkerboard until it has the same structure as
the binary tree. The next step is to combine all the leaves to
generate a mosaic pattern, as shown in Fig. 2(c), in which
the pattern is obtained by combining all the leaf patterns
in Fig. 2(b). If we replace the pixels labeled with different
numbers by different types of sensor nodes, we actually
generate a 5-type sensor placement pattern.

The binary-tree-driven pattern generation process would
guarantee the uniform distribution of each type of sensor node
across the whole sensing field. What is more important, given
the POA, a binary tree is uniquely generated, based on which
the location of different types of sensor nodes can be derived
with some general rules. The only restraint is that the ratios
of different sensor nodes are limited to power of two, which
may not be the case in real world application. However, we
can always choose the closest approximation to substitute the
real ratio.

III. SWARM INTELLIGENCE (SI) BASED MOVEMENT

In order to converge to the optimal placement presented
in Sec. II, we propose an SI-based movement mechanism,
where the individual behavior of different sensors results in
the collaborative efforts of the whole system. The movement
strategy attempts to enable the network converge to the
optimal topology with the least convergence time, movement
distance, and energy consumption.

In recent years, development in SI has motivated re-
searchers to find biologically emulated strategies to solve
complex system problems. The research on SI is based on the
idea that simple rules carried by individual entity can lead to
a complex behavior of the whole system [11]. The behavior
of social insects has inspired the development of different
algorithms [12] applied to different problem domains, such
as the travelling salesman problem [17], [18], the sequential
ordering problem [19], the quadratic assignment problem
[20], and the network routing problems [21], [22].

In this paper, we apply SI to the mobile sensor deployment
problem. Each sensor node is considered as an individual
entity that carries a simple rule. The limited capability of
each sensor leads to an optimal configuration of the whole
sensor network. As we will show in Sec. IV, the SI-based
method is able to converge to the optimal state with rapid
convergence and efficient energy conservation.

It is known from the sensor placement design that the dis-
tributions of different sensor platforms present regular pattern.
If we set up an orthogonal coordinate system with the origin
at the top-left corner of the grid and the distance between two
grid points being unit, we can specify the positioning criteria
(stop condition) according to the coordinates of sensors,
which satisfy a set of unique constraints for different sensor
platforms. Figure 4 shows an example of a sensor network
with seven different sensor nodes, in which thex andy are the
coordinates of a sensor. Each sensor carries the stop condition
of its own sensor type. At each grid point, the sensor checks



the stop condition and determines whether it should position
itself or go somewhere else. We assume each sensor should
know whether the current position has been occupied or not.
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Stop condition:

type 1: x modulus 2 is 0 AND x+y modulus 4 is 0

type 2: x modulus 2 is 1 AND x+y modulus 4 is 1

type 3: x modulus 2 is 1 AND x+y modulus 4 is 2

type 4: x modulus 2 is 0 AND y modulus 2 is 1

type 5: x modulus 2 is 0 AND x+y modulus 4 is 2

type 6: x modulus 2 is 1 AND x+y modulus 4 is 3

type 7: x modulus 2 is 1 AND x+y modulus 4 is 0

Fig. 4. Positioning criterion of a sensor network with seven different
platforms.

For a team of sensors, an important issue is to determine
which level of intelligence each sensor should have in order to
present swarm intelligence. Low level of intelligence of each
sensor might not be enough to manifestswarmintelligence, or
at the cost of consuming more system sources. On the other
hand, high intelligence is normally infeasible for a simple
sensor node. In the context of this paper, we consider low
intelligence as that each sensor only carries its stop condition.
At each location, the sensors randomly choose the next target
position. We expect the convergence time to be very long due
to the completely random movement. We name this kind of
movement therandom movement.

If we add another level of intelligence, that is, at a certain
sensor site, the sensor knows which neighboring sensor site is
or closer to its destined sensor location, then it can go directly
to that direction without random walk. By confining the mov-
ing direction, we expect to reduce the deployment time as well
as the energy consumption during movement compared to the
random movement strategy. We call this movement strategy
theSI-based movementdue to the increased intelligence level.
An 8-direction movement is considered: north (N), south (S),
east (E), west (W), north-east (NE), north-west (NW), south-
east (SE) and south-west (SW). Each sensor carries a simple
rule, based on which, the sensor should know which direction
to go. Algorithms 1-3 demonstrate the rules that should be
carried by different sensors in a 3-type sensor network, as
shown in Fig. 1 (r = 1/2 : 1/4 : 1/4), where the red,
green, and blue colors represent the type 1, 2 and 3 sensors,
respectively.

In the random and the SI-based movement strategies, no
direct communication is needed. Before a sensor reaches its
target location, it has no information about whether the target
location has been occupied or not. If the target position has
already been occupied, the sensor has to move to other loca-
tions, which consumes extra energy. To alleviate the unneces-
sary energy consumption, we allow localized communication
between sensors. All the positioned sensors (sensor that find
their final locations) broadcast their coordinate to inform that
the corresponding positions have been occupied. At each grid
point, the unpositioned sensor first checks the occupation of
its neighbors. By doing so, the sensor can then move to a
vacant sensor site. If all the neighboring sensor locations

Algorithm 1: Rules carried by type 1 sensors.
Data : Node type 1 (R), current position(x, y)

while x mod 2! = 0 AND y mod 2! = 0 do
if (x + y) mod 2! = 0 then

if x mod 2 == 1 then
random walk N,S;

end
else

random walk W,E;
end

end
else

random walk NW,NE,SW,SE;
end

end

Algorithm 2: Rules carried by type 2 sensors.
Data : Node type 2 (G), current position(x, y)

while (x + y) mod 2 == 0 do
random walk N,S,W,E;

end

are occupied, the sensor randomly chooses one direction
and moves out of the local eight-neighborhood. Through
communication, the sensor movement can be reduced to a
large extent and thereby reducing the energy consumption on
mechanical movement. However, the energy consumption on
communication is introduced.

IV. PERFORMANCEMETRICS

In order to evaluate the performance of the placement
strategy as well as different movement mechanisms, we
design three metrics, including thenetwork coverage and re-
dundancy, theconvergence time, and theenergy consumption.

Network Coverage and Redundancy: Network coverage
is a commonly referenced metric for evaluation of sensor
deployment algorithms in a number of literature [4], [5], [6],
[7], [8]. It is defined as the sensing capability of a sensor
network, that is, how well the network can observe or monitor
the given sensing field.

Algorithm 3: Rules carried by type 3 sensors.
Data : Node type 3 (B), current position(x, y)

while x mod 2! = 1 AND y mod 2! = 1) do
if (x + y) mod 2! = 0 then

if x mod 2 == 0 then
random walk N,S;

end
else

random walk W,E;
end

end
else

random walk NW,NE,SW,SE;
end

end



The sensing range is modelled as a circle whose center
denotes the sensor. In this paper, we consider a probabilistic
model [4], where the sensing sensitivity depends on the geo-
metrical distance from the sensor. Letssp denote the sensing
sensitivity of a sensor, thenssp = e−αdu(c − d), whereα
represents the sensitivity coefficient, which determines how
fast the sensitivity decreases as the target goes further away
from the sensor.u() is the step function, andd denotes
the Euclidean distance between the sensor and the point
investigated. The constantc is the sensing range of a sensor,
above which the sensing capability is zero.

Given a sensing field withQ grid points, suppose a group
of sensors withT different types are deployed. We define a
probabilistic coveragemodel as follows. For a certain grid
point gn, n = 1, 2, · · · , Q, we search for the nearest sensor
st, t = 1, 2, . . . , T of each type. If the Euclidean distancedt

between the sensorst and the grid pointgn is less than the
corresponding sensing rangect of sensor typet, we say this
grid point is covered by this kind of sensor at the sensitivity
of e−αtdt , whereαt is the sensitivity coefficient of sensor
type t. The coverage of grid pointn can then be formulated
as

covern =
1
T

T∑
t=1

e−αtdtu(ct − dt) (1)

And the coverage of a sensor network is defined as the average
coverage of all grid points.

The network coverage can be increased by deploying more
sensor nodes especially in the sparsely deployed region.
However, as more sensors are deployed in a given sensing
field, it is very likely that more than one sensor of the same
type would cover a single point. This can be measured by
network redundancy. For the grid pointgn, the total number
of sensors that cover this point isN(N > 0), then the
redundancy of this grid point is defined as

redundancyn =
∑N

i=1 e−αidiu(ci − di)− Tcovern∑N
i=1 e−αidiu(ci − di)

(2)

The grid point that is not covered by any sensor is not
considered when calculating the redundancy. The redundancy
of a sensor network is the average redundancy of all grid
points that are covered.

Convergence Time: Convergence time refers to the time
needed for a sensor network to converge from the initial state
to the final configuration. As mentioned before, we define the
convergence time as the number of deployment epoch of the
last positioned sensor. The deployment epoch refers to the
time for an unpositioned sensor to move from one grid point
to an adjacent grid point. To simplify the discussion without
loss of generality, we assume the movement from one grid
point to another takes the same amount of time irrespective
of the actual distance. And hence, the larger the number of
deployment epochs, the longer the convergence time, and the
worse the system performance.

Energy Consumption: In sensor networks, the key chal-
lenge is to conserve system energy, thereby maximizing

the lifetime and improving the performance of the network.
Energy consumption is the most relevant metric in a sensor
network, since sensor nodes only carry limited power source,
and in most applications, it is impossible to replace sensor
battery. The two major energy consumption sources in mobile
sensor networks are due to mechanical movement and com-
munication. In the random and the SI-based method, only
mechanical movement consumes energy. While for the SI-
based movement with local communication, besides the me-
chanical movement, the energy consumption in transmission
and receiving also needs to be considered.

We use a linear model to calculate the energy consumption
in mechanical movement based on the assumption that the
energy consumed in movement is proportional to the moving
distance, that isEcons = d × emove where d is the mov-
ing distance, andemove represents the unit distance energy
consumption.

The energy model for electronic communication is based
on the first order radio model [23]. Two parts of energy
consumption in communication are considered: electric cir-
cuitry eelec and transmitter amplifiereamp, where we assume
eelec = 500eamp. The energy consumed by a sensor when
receiving a data packet is given byErcv = eelecB, while
the energy consumed in transmitting a data packet is given
by Etran = eelecB + eampd

2B, whered is the maximum
communication distance, andB is the number of bits in
the data packet. To be able to compare energy consumption
in different movement strategies, we need to investigate the
relationship between energy consumption in movement and
communication. We assumeemove = βeelec and by choosing
different ratiosβ, we study the effect of energy consumption
in movement and communication.

V. EXPERIMENTS

In all the simulations, we assume each sensor is equipped
with a positioning system (such as GPS) that allows the sensor
to find its location and orientation during the movement; and
all the sensors can move freely within the sensing field. For
example, we assume there is no collision between different
sensors and between sensors and obstacles. Each sensor can
detect the boundary of the network so that it will not move
out of the sensing field.

The sensing field is chosen to be a 50m×50m 2-D region.
There are five types of sensing platforms with the ratio equal
to r = 1

4 : 1
4 : 1

4 : 1
8 : 1

8 to be deployed. We assume the
same sensing range of10m and the same sensing sensitivity
coefficient ofα = 0.035 for different modalities. The sensing
sensitivity coefficient is selected such that at the distance of
sensing rangec, the sensor still has 70% sensing sensitivity.
We first compare the proposed optimal mosaic placement
design with the random placement in the sense of network
coverage and redundancy, then we evaluate the performance
of the SI-based movement strategy.



A. Random placement vs. Optimal mosaic placement

Figure 5 shows an initial and final network configurations.
Different colors and marks are used to represent different
types of sensor nodes. It can be seen that in the initial stage,
the sensors clump in some regions, while in the final stage,
all the sensors distribute uniformly across the whole sensing
field. We expect the even spacing would improve the network
coverage.
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Fig. 5. Network configuration: (a) Initial state (b) Final state after 1965
epochs using the random movement.

For the given sensing field, we deploy different numbers of
sensors using both the random placement and the proposed
mosaic algorithm. To calculate the network coverage and
redundancy, we assume the sensing field is resampled into
a 100-by-100 rectangular grid. These grid points are not the
real sensor sites. By doing so, we can study the coverage and
redundancy of the sensing area at a higher resolution of0.5m.
Moreover, the uncertainties associated with the precise sensor
locations are considered. Currently, after error corrections,
some GPS systems can provide< 1m position accuracy [24].
As a consequence, we add0 ∼ 1m random error to the final
mosaic sensor locations to simulate the position error.

In Fig. 6(a), we evaluation the coverage metric versus
sensor density with the number of sensors deployed varied
among 25, 36, · · · , 256. . We observe that to reach 80%
coverage, about 160 sensors must be deployed using the
random placement, while only 90 sensors are needed using
the proposed placement algorithm. From the simulation re-
sults, it is quite obvious that the mosaic placement improves
the sensing field coverage compared to the random sensor
placement. Figure 6(b) illustrates network redundancy against
the network coverage. We again observe that for the same
coverage level, the network redundancy is much higher using
the random placement. As the number of sensors increases,
the redundancy increases and the difference between the
random placement and the mosaic placement decreases.

B. Random Movement vs. SI-based Movement

In this simulation, we compare the random movement
strategy with the SI-based movement with and without com-
munication from the perspectives of convergence time, net-
work coverage, and energy consumption. In the following
experiments, we fix the number of sensors to be 64 except
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Fig. 6. The network coverage and redundancy using both random deploy-
ment and optimal placement. (a) Network coverage (b) Network redundancy

when we investigate the scalability of the SI-based methods
with and without communication.

To investigate the convergence time, different movement
methods are performed twenty times and the deployment
epochs are recorded. After deleting the two maximum and two
minimum values, the average deployment epochs are about
5000, 180, and 50 for the random movement, the SI-based
method without and with local communication, respectively.
It can be seen that the SI-based method with communication
converges the fastest, and the random movement the lowest.
In Fig. 7, we plot the percentage of positioned sensors as
a function of deployment epochs. It can be seen that the
SI-based method with communication needs shorter time to
deploy all the 64 sensors. We also observe that around 90%
sensors are positioned within the first 15 epochs using the
SI-based method with communication. As the number of
positioned sensors increases, it takes much longer time to
converge since most of the sensor sites have been occupied.

Figure 8 shows the measured network coverage against
the number of deployment epochs using the three movement
methods. Due to the randomness, the plots present different
degrees of fluctuation. Note that in general, the network
coverage increases with the deployment epochs, independent
of the movement methods used. Given a specified coverage
level, the SI-based movement with communication converges
faster than the other two methods. At a certain deployment
time, the SI-based method with communication presents
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Fig. 7. The percentage of positioned sensors vs. deployment epochs.

higher network coverage level. Another observation is that
the coverage increases very quickly at the early stage of the
sensor movement. After a certain time, the profiles become
stable. At this stage, even though the network has not yet
reached its optimal placement state, the network coverage
is already very high. This is because at the early stage of
deployment, most sensor sites are vacant, and it is very easy
for an unpositioned sensor to find its final sensor site. As
the area covered by the positioned sensor nodes increases,
the other nodes will have to travel further to reach their final
locations.
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Fig. 8. Network coverage vs. deployment epochs.

Both the results in studying the network coverage and the
convergence time reveal that there is a tradeoff in between,
which is highly related to the energy consumption. In some
applications, the coverage requirement might not be that
critical, and it is not cost-effective to move sensors for a
long distance to get a very small coverage improvement. In
this case, we would like to terminate the deployment process
before the maximum coverage is reached to save energy and
reduce the deployment time. To terminate the deployment
procedure earlier, we can set a threshold, defined as the
minimum energy left in the sensor, below which the sensor
will not move.

We next study the energy consumption during deployment.
The communication range is assumed to be the same as the
sensing range, which is10m. The coordinate information is
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Fig. 9. Comparison of energy consumption using different movement
methods.

coded using32bit data. We study the energy consumption in
communication and movement by choosing different ratios
of β = emove/eelec given fixed eelec (50nJ/bit [23]).
The experimental results are illustrated in Fig. 9. It can be
seen that if the ratio is less than 3, the SI-based method
with communication performs the worst. When the ratio is
larger than 3 and less than 47, the SI-based method with
communication outperforms the random movement, but it is
still worse than the SI-based method without communication.
If the ratio is greater than 47, the SI-based method with
communication presents the best performance. Note that the
SI-based method without communication always outperforms
the random movement.

Figure 10 illustrates the performance of the SI-based
method with and without communication when scaled to
different sizes of networks, where we deploy 25 and 144
sensors in the same sensing field as stated at the beginning
of this section, respectively. The solid line denotes the result
of the SI-based method with communication, and the dotted
line the SI-based method without communication. The symbol
∇ represents the results of 144 sensors and the symbol×
corresponds to the results of 25 sensors. We observe that for
the given sensing field, the change of energy consumption in
sensor movement is smaller than that in communication. Since
the total area of the sensing field is fixed, as the number of
deployed sensors increases, the distance between two adjacent
grid points would decrease such that the energy consumed
when a sensor moves from one grid point to another is
reduced. Even though the total number of sensors is large,
the total energy consumption in sensor movement does not
change too much.

From the simulation results, we see that the proposed
sensor placement design can achieve reliable coverage level
with lower redundancy, and the SI-based movement outper-
forms the random movement. The comparison between the
SI-based movement with and without communication depends
on the ratioβ. The sensor network is able to converge to the
optimal state with less convergence time and lower energy
consumption using the SI-based methods.
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VI. CONCLUSION

This paper addressed the problem of self-deployment of
heterogeneous mobile sensor networks using biologically-
inspired principles and methodologies for cost-effective and
reliable-coverage purposes. A mosaic sensor placement is
developed and the simulation results demonstrate the optimal-
ity of the proposed placement design. To converge to such
an optimal state, the SI-based self-organization mechanism
is investigated. Performance evaluation is conducted from
three perspectives, including network coverage, redundancy,
convergence time, and energy consumption. The experiments
described in this paper confidingly demonstrate that the SI-
based sensor movement with communication can be used to
deploy mobile sensor networks with rapid convergence and
low energy consumption.

In this paper, several assumptions were made during the
simulation in order to simplify the problem and highlight
baseline algorithm evaluation. Interesting future directions
would include sensor movement for network reconfigurations
adapting to the event distribution, more realistic models of
the environment such as the introduction of obstacles, other
sampling grids like hexagonal or triangular to relax the POA
restraint.
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